Return to search

Investigação do mecanismo cinético da reação de redução de oxigênio em solventes não aquosos / Investigation of the kinetic mechanism of the oxygen reduction reaction in non-aqueous solvents

O aumento no consumo energético e a crescente preocupação ambiental frente à emissão de gases poluentes criam um apelo mundial favorável para pesquisas de novas tecnologias não poluentes de fontes de energia. Baterias recarregáveis de lítio-ar em solventes não aquosos possuem uma alta densidade de energia teórica (5200 Wh kg-1), o que as tornam promissoras para aplicação em dispositivos estacionários e em veículos elétricos. Entretanto, muitos problemas relacionados ao cátodo necessitam ser contornados para permitir a aplicação desta tecnologia, por exemplo, a baixa reversibilidade das reações, baixa potência e instabilidades dos materiais empregados nos eletrodos e dos solventes eletrolíticos. Assim, neste trabalho um modelo cinético foi empregado para os dados experimentais de espectroscopia de impedância eletroquímica, para a obtenção das constantes cinéticas das etapas elementares do mecanismo da reação de redução de oxigênio (RRO), o que permitiu investigar a influência de parâmetros como o tipo e tamanho de partícula do eletrocatalisador, o papel do solvente utilizado na RRO e compreender melhor as reações ocorridas no cátodo dessa bateria. A investigação inicial se deu com a utilização de sistemas menos complexos como uma folha de platina ou eletrodo de carbono vítreo como eletrodos de trabalho em 1,2-dimetoxietano (DME)/perclorato de lítio (LiClO4). A seguir, sistemas complexos com a presença de nanopartículas de carbono favoreceu o processo de adsorção das moléculas de oxigênio e aumentou ligeiramente (uma ordem de magnitude) a etapa de formação de superóxido de lítio (etapa determinante de reação) quando comparada com os eletrodos de platina e carbono vítreo, atribuída à presença dos grupos laterais mediando à transferência eletrônica para as moléculas de oxigênio. No entanto, foi observada uma rápida passivação da superfície eletrocatalítica através da formação de filmes finos de Li2O2 e Li2CO3 aumentando o sobrepotencial da bateria durante a carga (diferença de potencial entre a carga e descarga > 1 V). Adicionalmente, a incorporação das nanopartículas de platina (Ptnp), ao invés da folha de platina, resultou no aumento da constante cinética da etapa determinante da reação em duas ordens de magnitude, o qual pode ser atribuído a uma mudança das propriedades eletrônicas na banda d metálica em função do tamanho nanométrico das partículas, e estas modificações contribuíram para uma melhor eficiência energética quando comparado ao sistema sem a presença de eletrocatalisador. Entretanto, as Ptnp se mostraram não específicas para a RRO, catalisando as reações de degradação do solvente eletrolítico e diminuindo rapidamente a eficiência energética do dispositivo prático, devido ao acúmulo de material no eletrodo. O emprego de líquido iônico como solvente eletrolítico, ao invés de DME, promoveu uma maior estabilização do intermediário superóxido formado na primeira etapa de transferência eletrônica, devido à interação com os cátions do líquido iônico em solução, o qual resultou em um valor de constante cinética da formação do superóxido de três ordens de magnitude maior que o obtido com o mesmo eletrodo de carbono vítreo em DME, além de diminuir as reações de degradação do solvente. Estes fatores podem contribuir para uma maior potência e ciclabilidade da bateria de lítio-ar operando com líquidos iônicos. / The increasing in energetic consumption and environmental concerning toward rising in the emission of pollutant gases create a favorable scenario to develop non-pollutant technologies and more efficient energy storages. Rechargeable non-aqueous lithium-air batteries possess high theoretical energy density (5200 Wh kg-1), characterizing as a promising system to stationary and electric vehicles applications. However, many issues on the cathode electrode should be addressed to enable this technology, for example, low reversibility of the reactions, low rate-capability and instabilities issues from cathode materials and electrolytic solvents. Here, a kinetic model was employed for modulate the experimental impedance data in order to obtain the rate constants of elementary steps from oxygen reduction reaction (ORR), which allows the investigation of the role of some parameters such as, type and grain size of electrocatalysts, and the solvent influence. The initial investigation were with less complexes systems of platinum bulk or glassy carbon as the working electrode in 1,2-dimethoxyethane (DME)/lithium perchlorate (LiClO4). Based on that, the role of carbon nanoparticles in the ORR was an increasing the oxygen adsorption process, and by slightly increasing (one order of magnitude) the superoxide formation (rate determining step) as when compared with platinum and glassy carbon electrodes due to the presence of side groups acting as mediators to the electron transfer. Nonetheless, a fast surface passivation was observed in function of Li2O2 and Li2CO3 thin films formations, and these films increase the battery overpotential during the charge process (potential difference between charge/discharge >1V). In addition, dispersed platinum nanoparticles (Ptnp) resulted in an increase of two orders of magnitude on the rate constant of the rate determining step when compared to platinum bulk. This can be explained due to changes in electronic properties of metallic d-bands in function of nanometric size. These changes contributed to enhance the energetic efficiency of the practical device when compared to the non-catalyzed system. However, the Ptnp were non-specific toward the ORR catalyzing the electrolyte degradation reactions, and decreasing the energy efficiency faster than the non-catalyzed system. The ionic liquid rather than DME promoted better stabilization process for intermediary superoxide due to interaction between cations present in solution, resulting in an outstanding enhancement of the rate constant for rate determining step (three orders of magnitude) when compared to the same working electrode in DME. In addition, decrease the electrolyte degradation reaction. These factors can improve a higher rate-capability and cycle life of the practical lithium-air batteries.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11032016-192108
Date12 February 2016
CreatorsSilva, Nelson Alexandre Galiote
ContributorsHuguenin, Fritz Cavalcante
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0031 seconds