Return to search

Heterogeneous Photolytic Synthesis of Nanoparticles

Nanoparticles of iron, cobalt and tungsten oxide were synthesised by photolytic laser assisted chemical vapour deposition (LCVD). An excimer laser (operating at 193 nm) was used as an excitation source. The LCVD process, was monitored in situ by optical emission spectroscopy (OES). The synthesised particles were further analysed using transmission electron spectroscopy (TEM), X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Iron and cobalt single crystalline nanoparticles were synthesized using ferrocene and cobaltocene precursors. The diameter of the particles could be tailored by the experimental parameters (e.g., partial pressure and laser power) and were in the range 1 - 50 nm in diameter. In both cases, the particles were covered by a carbon shell, typically 7 nm thick. A thin graphitic layer was observed at the interface metal-carbon. Amorphous carbon was deposited on top of the graphitic carbon. Particle temperature, reaching the boiling point of the respective metal, was observed by OES of the thermal emission during the laser-induced particle formation process (and subsequent heating). Both bcc and fcc Fe phases were formed, both hcp and fcc for the Co phases. Size dependent magnetic properties were observed using superconducting quantum interference device (SQUID) measurements, where super-paramagnetic magnetic domains dominated for d < 10 nm. The iron particles were further processed, whereby the amorphous shell was removed by refluxing in nitric acid. In a subsequent step, the graphitic surface was functionalized by attaching an octyl ester, rendering the particles hydrophobic. Tungsten oxides were synthesized from combinations of WF6/H2/O2 as precursors. No particles could be deposited if H2 was removed from the gas-mixture. The as-deposited oxide nanoparticle film was amorphous. A monoclinic WO3 particle film could be achieved by annealing the amorphous oxide. Above 400°C, the oxide particles increased in size from ca. 20 nm to 60 nm through coalescence. The gas-sensing properties of the tungsten oxide were tested by conductance measurements using H2S as analyte. The sensitivity of the amorphous oxide nanoparticle film was found to be superior to that of a crystalline oxide nanoparticle film.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-8256
Date January 2007
CreatorsAlm, Oscar
PublisherUppsala universitet, Institutionen för materialkemi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 352

Page generated in 0.0026 seconds