The electroplating industry has not evolved substantially over the years. Typically, the industry relies on experience as well as the common sense of its personnel to produce parts and to deal with any waste products that the plating process produces. With the heightened environmental awareness of the 1990s, past practices which produced acceptable treatment levels are no longer good enough.
There are numerous methods for meeting the environmental laws of the 1990's.
Technology can range from the simple to the complex. Several established methods for the electroplating industry are ion exchange, reverse osmosis, electrodialysis, ion flotation, sulfide precipitation and activated carbon. Internal waste reduction programs, discharging to publicly owned treatment works and zero discharge are as well viable options for the industry.
With the combination of regulations and compliance scenarios facing today's etectroplating operations, it is necessary to define a protocol or methodology which will enable them to make economically feasible decisions as to what compliance option best fits with their corporate strategy. By doing so, the decision will allow them to continue to operate into the 21st century. The selection process must be flexible enough so that state of the art technologies are not the only solution. It must
allow for multiperson evaluation of systems with multiattributes.
This report represents the development and application of a methodology for evaluating different environmental compliance scenarios for the electroplating industry. The methodology was developed using the analytical hierarchy process, AHP. The strength of AHP lies in its ability to incorporate complex, multiattribute systems into a single decision making process which is robust enough to allow for multiperson evaluation. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/40702 |
Date | 20 January 2010 |
Creators | Brown, Neil J. |
Contributors | Systems Engineering, Reasor, Roderick J., Michelsen, Donald L., Blanchard, Benjamin S. Jr. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Master's project |
Format | BTD, application/pdf |
Relation | LD5655.V851_1991.B768.pdf |
Page generated in 0.0019 seconds