Return to search

A vortex-lattice method for Delta wing aerodynamics

A Numerical Solution is presented for the problem of flow past a highly swept, slender wing with sharp leading edges. The lifting surface is modelled as a bound vortex sheet, while the wake is modelled as a force-free vortex sheet. The solution is obtained by the use of a unsteady Vortex-Lattice Method which includes the effect of leading edge separation. Numerical predictions for the aerodynamic loads and pressure distributions are compared with experimental data. A 75° Delta wing and a 60° Delta wing with Leading Edge Vortex flaps in uniform, symmetric and steady flow are studied. Uniform and cosine distributions are used to determine the effect of lattice shape on the solution.

The results show that good aerodynamic load predictions are obtained by this Vortex-lattice method. The results also indicated that fewer cosine distribution control points predict pressures as well as the use of a larger number of uniform distribution control points. The numerical results for wings with LEVFs show good agreement with experimental data away from the trailing edge. This may be due to the viscous effects in the experiment not modelled in this method. It is also apparent that the size of the wake, trailing and leading edge wakes, is the important factor effecting computation times. / M.S.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106249
Date January 1983
CreatorsAnandakrishnan, Satyamoorthi
ContributorsAerospace and Ocean Engineering
PublisherVirginia Polytechnic Institute and State University
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Formatviii, 54 leaves, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 09808917

Page generated in 0.0011 seconds