Reactions of 4-chloro-2,6-dimethoxypyrimidine (1) with enolates of acetone, pinacolone, diisopropyl ketone, and ethyl phenylacetate generated by means of potassium amide in 1 liquid ammonia were found to proceed by the S<sub>RN>1 mechanism upon photostimulation with near-UV light to give good yields of substitution products resulting from displacement of chloride ion.
Both photostimulated and dark reactions of 4-chloro-2,6-dimethoxypyrimidine (1) with the carbanions of acetonitrile and propionitrile proceed exclusively by an ionic mechanism in liquid ammonia or THF to give a mixture of monosubstitution products resulting from displacement of chloride or the 6-methoxy substituent. With the acetonitrile carbanion the product resulting from displacement of methoxide was the major substitution product, while reaction of 1 with propionitrile carbanion afforded a preponderance of the product resulting from chloride displacement.
Photostimulated reaction of 2-chlorothiazole (2) with the potassium enolate of pinacolone proceeds by a radical-chain mechanism to give the substitution product resulting from chloride displacement. However, when 2 is allowed to react with pinacolone enolate in the dark a completely unexpected product is formed. Under these conditions, the tertiary alcohol, 2-(2-chlorothiazol-4-yl)-3,3-dimethyl-2-hydroxybutane, was formed in which the pinacolone unit had been incorporated in an aldol fashion at the 4-position of 2. Both photostimulated and dark reactions of 2 with the enolate of diisopropyl ketone produced a similar carbinol, 3-(2-chlorothiazol-4-yl)-2,4-dimethyl-3-hydroxypentane, in good yields. Treatment of 2 with potassium amide in liquid ammonia or LDA in THF followed by addition of benzophenone afforded 2-chloro-4-(diphenylhydroxymethyl) thiazole in excellent yield. Trapping experiments with deuterium oxide and iodomethane provide evidence that such aldol-type reactions take place via initial metalation of 2 at position-4, followed by reaction of the resulting carbanion with the appropriate electrophile. This is the first example of direct metalation occurring at the 4-position of a thiazole derivative. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/76069 |
Date | January 1984 |
Creators | Dillender, Samuel C. |
Contributors | Chemistry, Wolfe, James F., Hudlicky, Milos, McGrath, James E., Ogliaruso, Michael A., Mason, John G. |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | vii, 137, [2] leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 10993348 |
Page generated in 0.0111 seconds