Water diffusion through the adhesive is the rate controlling factor for the durability of many metal-to-polymer bonds exposed to moist environments. A methodology is proposed, to relate the diffusion coefficient of water in polymers to temperature, strain and penetrant concentration. The approach used is based on well known free volume theories. In the rubbery state, it is assumed that the transport kinetics is governed by the constant redistribution of the free volume, caused by the segmental motions of the polymeric chains. An expression for the diffusion coefficient is inferred from the temperature, strain and penetrant concentration of the free volume. lt is shown that the free volume treatment can be extended to the glassy range by introducing a few additional features in the model. The stress dependence of solubility as well as the non-fickian driving forces contributing to mass transport are predicted from the Flory-Huggins theory. Experimental validation of the concentration dependence and temperature dependence of the diffusion coefficient is shown. The effect of mechanical strain on diffusivity and solubility in the glassy state is also investigated experimentally, using both the permeation and sorption techniques. Good agreement with theory is generally found. The coupling mechanisms between the diffusion process and the viscoelastic response of the adhesive are explained. A numerical scheme for fully coupled solutions is implemented in a two- dimensional finite element code. A few numerical solutions are shown. In the case of bonds undergoing unusually harsh environmental exposure however, alternative methods must be sought for durability characterization and prediction. This is illustrated with the case of rubber-to-steel joints exposed to a cathodic potential in seawater. The mechanical analysis of a durability specimen is presented and a procedure for debond prediction is suggested. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52325 |
Date | January 1988 |
Creators | Lefebvre, Didier R. |
Contributors | Materials Engineering Science, Ward, Thomas C., Wightman, James P., Reifsnider, Kenneth L., Grant, W., Brinson, H.F., Dillard, D.A. |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | x, 160 leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 18621076 |
Page generated in 0.0018 seconds