Return to search

Fitting spline functions by the method of least squares

A spline function of degree k with knots S₀, S₁,...,Sr is a C[superscript]k-1 function which is a polynomial of degree at most k in each of the intervals (-∞, S₀), (S₀, S₁),…, (Sr,+∞). The Gauss-Markoff Theorem can be used to estimate by least squares the coefficients of a spline function of given degree and knots.
Estimating a spline function of known knots without full knowledge of the degree entails an extension of the Gauss-Markoff technique. The estimation of the degree when the knots are also unknown has a possible solution in a method employing finite differences.
The technique of minimizing sums of squared residuals forms the basis for a method of estimating the knots of a spline function of given degree. Estimates for the knots may also be obtained by a method of successive approximation, provided additional information about the spline function is known. / Science, Faculty of / Mathematics, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/38626
Date January 1967
CreatorsSmith, John Terry
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0023 seconds