Neste trabalho, mostramos que fluxos de Reeb dinamicamente convexos em um espaço lenticular $L(p, 1)$, $p>1$, admite uma órbita periódica de Reeb especial $P$ que é o binding de uma decomposição em livro aberto racional, com páginas tipo-disco tal que cada página é uma seção global. O índice de Conley-Zehnder da $p$-ésima iterada de $P$ é $3$. Como corolário, o fluxo de Reeb possui duas ou infinitas órbitas periódicas. Este resultado aplica-se ao Hamiltoniano de Hénon-Heiles, cujo fluxo restrito a energia baixa possui $Z_3$-simetria e define um fluxo de Reeb em $L(3, 1)$. Devido a $Z_4$-simetria aplicamos nosso resultado ao problema lunar de Hill regularizado. Na segunda parte deste trabalho investigamos a existência de uma folheação $3-2^3$ em níveis de energia no sistema Hamiltoniano de Hénon-Heiles, para energia logo acima da crítica. Provamos que certa região de interesse é uma hipersuperfície de contato. Provamos também que o fluxo de Reeb possui uma órbita periódica $Z_3$ simétrica, cujo índice de Conley-Zehnder é $3$ e possui número de auto-enlaçamento $-1$. / We show that a dynamically convex Reeb flow on a lens space $L(p, 1)$, $p>1$ admits a special closed Reeb orbit $P$ which is the binding of a rational open book decomposition with disk-like pages so that each page is a global surface of section. The Conley-Zehnder index of the $p$-th iterate of $P$ is $3$. As a corollary, the Reeb flow has $2$ or infinitely many closed Reeb orbits. This result applies to the Hénon-Heiles Hamiltonian whose flow restricted to low energy levels has $Z_3$-symmetry and descends to $L(3,1)$. Due to a $Z_4$-symmetry we also apply our results to Hill\'s lunar problem. In the second part of this work we investigate the existence of a $3-2^3$ foliation on energy levels of the Hénon-Heiles Hamiltonian, for energies above the critical one. We show that some region is of contact-type and the Reeb flow has a $Z_3$-symmetric periodic orbit, whose Conley-Zehnder is $3$ and has self-linking number $-1$.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04042018-171903 |
Date | 15 December 2017 |
Creators | Schneider, Alexsandro |
Contributors | Salomão, Pedro Antonio Santoro |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds