The principal observational contribution of this thesis is an innovative technique, using spatially resolved spectroscopy of highly magnified, gravitationally lensed galaxies, to study their internal structure and kinematics at redshift, z≥1 on sub-galactic scales. The scientific objective is to measure the important, but poorly understood, role of star formation and associated feedback on galaxy evolution. With Gemini GMOS-IFU observations of CFRS03+1077, a lensed galaxy at z=2.94, we determined surface brightness and integration time requirements for spatially resolved kinematics with spectra in the visible region (< 1 micron). For reasonable exposure times the presence of a strong emission line is key, limiting the redshift range to < 1.5 for [OII]3727Å. To tackle the lack of suitable lenses for such studies, we designed a lens search algorithm suitable for multi-color photometric data (with a minimum of 2 colors). Our method uses a two-step approach, first automatically identifying galaxy clusters and groups as high likelihood lensing regions, followed by a dedicated visual search for lensed arcs in pseudo-color images of sub-regions centered on these candidates. By using the color-position clustering of elliptical galaxies in high density environments, the algorithm efficiently isolates candidates with a completeness ≥ 80% for z ≤ 0.6 in Monte-Carlo simulations. Implemented on the CFHT Legacy Survey-Wide fields with available g, r and i photometry, the present yield is 9 lenses (8 new and 1 previously known) from 104 deg². With Gemini GMOS, we confirmed two lensed galaxies with strong [OII]3727Å emission suitable for IFU spectroscopy. The follow-up of both systems, the confirmation of remaining lenses and the application of the lens detector to the remaining 91 square degrees of CFHTLS-Wide are ongoing.
In a complementary project, we aim to understand non-linear structure formation within the Λ-CDM framework by characterizing the mass distributions and mass/light ratios of galaxy groups; these structures (where 60% of all galaxies reside), have masses representative of the critical break between cluster and field galaxy mass scales. We use strong gravitational lensing to constrain the mass in the inner core, with velocity dispersion measurements from MOS spectroscopy to map the mass distribution up to the scale of the virial radius. The formalism supporting this approach as well as the tools for analysis (including an efficient B-spline based method for flat fielding and sky subtraction of sky limited spectra) are presented in this thesis. The deflectors of 6 lenses in our catalog resemble galaxy groups suitable for this study. One group, for which the observations are complete, is compatible with either NFW or Hernquist profile; these results will be corroborated with observations of other candidates in forthcoming observing programs. The objective is to amalgamate our results with mass measurements from weak lensing and X-ray observations from our Strong Lensing Legacy Survey (SL2S) collaborators to build a comprehensive picture of the dark matter profile and thus constrain theoretical predictions of mass assembly in galaxy groups.
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/1261 |
Date | 19 November 2008 |
Creators | Thanjavur, Karunananth G. |
Contributors | Crampton, David, Willis, Jon |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0021 seconds