Master of Science / Department of Geology / Abdelmoneam Raef / Advancements, applications, and success of time-lapse (4D) seismic monitoring of carbonate reservoirs is limited by these systems’ inherent heterogeneity and low compressibility relative to siliciclastic systems. To contribute to the advancement of 4D seismic monitoring in carbonates, an investigation of amplitude envelope across frequency sub-bands was conducted on a high-resolution 4D seismic data set acquired in fine temporal intervals between a baseline and eight monitor surveys to track CO₂-EOR from 2003-2005 in the Hall-Gurney Field, Kansas. The shallow (approximately 900 m) Plattsburg ‘C Zone’ target reservoir is an oomoldic limestone within the Lansing-Kansas City (LKC) supergroup – deposited as a sequence of high-frequency, stacked cyclothems. The LKC reservoir fluctuates around thin-bed thickness within the well pattern region and is susceptible to amplitude tuning effects, in which CO₂ replacement of initial reservoir fluid generates a complex tuning phenomena with reduction and brightening of amplitude at reservoir thickness above and below thin-bed thickness, respectively.
A thorough analysis of horizon snapping criteria and parameters was conducted to understand the sensitivity of these autonomous operations and produce a robust horizon tracking workflow to extend the Baseline Survey horizon data to subsequent Monitor Surveys. This 4D seismic horizon tracking workflow expedited the horizon tracking process across monitor surveys, while following a quantitative, repeatable approach in tracking the LKC and maintaining geologic integrity despite low signal-to-noise ratio (SNR) data and misties between surveys. Analysis of amplitude envelope data across frequency sub-bands (30-80 Hz) following spectral decomposition identified geometric features of multiple LKC shoal bodies at the reservoir interval. In corroboration with prior geologic interpretation, shoal boundaries, zones of overlap between stacked shoals, thickness variation, and lateral changes in lithofacies were delineated in the Baseline Survey, which enhanced detail of these features’ extent beyond capacity offered from well log data. Lineaments dominated by low-frequency anomalies within regions of adjacent shoals’ boundaries suggest thicker zones of potential shoal overlap. Analysis of frequency band-to-band analysis reveals relative thickness variation. Spectral decomposition of the amplitude envelope was analyzed between the Baseline and Monitor Surveys to identify spectral and tuning changes to monitor CO₂ migration. Ambiguity of CO₂ effects on tuning phenomena was observed in zones of known CO₂ fluid replacement. A series of lineaments highlighted by amplitude brightening from the Baseline to Monitor Surveys is observed, which compete with a more spatially extensive effect of subtle amplitude dimming. These lineaments are suggestive of features below tuning thickness, such as stratigraphic structures of shoals, fractures, and/or thin shoal edges, which are highlighted by an increased apparent thickness and onset of tuning from CO₂.
Detailed analysis of these 4D seismic data across frequency sub-bands provide enhanced interpretation of shoal geometry, position, and overlap; identification of lateral changes in lithofacies suggestive of barriers and conduits; insight into relative thickness variation; and the ability of CO₂ tuning ambiguity to highlight zones below tuning thickness and improve reservoir characterization. These results suggest improved efficiency of CO₂ -EOR reservoir surveillance in carbonates, with implications to ensure optimal field planning and flood performance for analogous targets.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/34628 |
Date | January 1900 |
Creators | Krehel, Austin |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds