Return to search

Modelling sustainable intensification in Brazilian agriculture

At the United Nations Framework Conference on Climate Change COP15 (2009) Brazil presented ambitious commitments or Nationally Appropriate Mitigation Actions (NAMAs), to reduce greenhouse gases emissions (GHGs) mitigation by 2020. At COP21 (2015), the country presented new commitments and a framework to achieve further mitigation targets by 2030 as so-called Intended Nationally Determined Contributions (INDCs). Both NAMAs and INDCs focus on the land use change and agricultural sectors, but the INDCs include a commitment of zero illegal deforestation in the Amazon by 2030. This research focuses on the contribution of the livestock sector to reducing GHGs through the adoption of sustainable intensification measures. A detailed linear programming model, called Economic Analysis of Greenhouse Gases for Livestock Emissions (EAGGLE), of beef production was developed to evaluate environmental trade-offs. The modelling encompasses pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon dynamics and upstream life-cycle inventory. The model was parameterized for the Brazilian Cerrado, Amazon and Atlantic Forest biomes and further developed for farm-scale and regional-scale analysis. Different versions of the EAGGLE model was used to: (i) Evaluate the GHG mitigation potential and economic benefit of optimizing pasture management through the partitioning of initially uniform pasture area; (ii) to define abatement potential and cost-effectiveness of key mitigation measures applicable to the Brazilian Cerrado; (ii) to demonstrate the extent of cost-effective mitigation that can be delivered by the livestock sector as part of INDCs, and to show a result that underpins the national INDC target of zero deforestation; and (iv) to evaluate the consequences of reducing (or increasing) beef production on GHGs in the Cerrado. Counter-intuitively, a sensitivity analysis shows that reducing beef consumption could lead to higher GHG emissions, while increasing production could reduce total GHGs if livestock is decoupled from deforestation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:738888
Date January 2017
CreatorsDe Oliveira Silva, Rafael
ContributorsMoran, Dominic ; Hall, Julian
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/28821

Page generated in 0.0118 seconds