Return to search

Flexoelectricity in nematic liquid crystals

Flexoelectricity in liquid crystals is thought to be due to a coupling between dielectric properties and shape anisotropy of the molecules and described by the fiexoelectric coefficients el and e3. Two experiments are needed to measure el and e3 and it is usual to measure the difference (el - e3) and the sum (el + e3) and then calculate el and e3· The first experiment to measure the difference (el - e3) uses a TN structure with an in-plane applied electric field. Due to the dielectric coupling, the director aligns with the electric field and due to the fiexoelectric effect, the director tilts out of plane. This tilt is measured optically using two laser beams at oblique incidence, e.g. 45°. Using a theoretical model the experimental data is fitted and the difference (el - e3) extracted. The second experiment to measure the sum (el + e3) uses a Pi cell. Applying an ac voltage the transmission through the device is a repeating oscillating signal which contains 1st and 2nd harmonics. The 1st harmonic corresponds to the fiexoelectric effect and the 2nd harmonic to the dielectric effect. Using a lock-in amplifier, the harmonics were measured and the sum (el + e3) extracted using a theoretical model to fit the experimental data. Unfortunately, the data proved the experiment to be unreliable and another method was developed, which uses a BAN cell. The third experiment uses simple pulses in a BAN cell and also measures the sum (el + e3). The big disadvantage of the BAN cell is an internal voltage, which is created by the homeotropic alignment layer and the fiexoelectric polarisation. The internal voltage has the same effect on the director profile as the fiexoelectric effect, which is a big problem in measuring fiexoelectricity. Using a material, which is non ionic and has no fiexoelectricity, the internal bias could be measured and taken into account. Applying short de pulses of opposite sign, the fiexoelectric effect can be observed by the optical response and can be measured. Using these experiments, a number of investigation are being carried out such as the correlation between fiexoelectricity and the molecular structure, ions, elastic properties, molecular orientation, dielectric anisotropy 6E, and order parameter S. The results showed that fiexoelectricity only depends on ions and dielectric properties which was very interesting and surprising at the same time.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:559774
Date January 2011
CreatorsKischka, Claudius
ContributorsElston, Steve
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0021 seconds