Existing methods for image-based location estimation generally attempt to recognize every photo independently, and their resulting reliance on strong visual feature matches makes them most suited for distinctive landmark scenes. We observe that when touring a city, people tend to follow common travel patterns---for example, a stroll down Wall Street might be followed by a ferry ride, then a visit to the Statue of Liberty or Ellis Island museum. We propose an approach that learns these trends directly from online image data, and then leverages them within a Hidden Markov Model to robustly estimate locations for novel sequences of tourist photos. We further devise a set-to-set matching-based likelihood that treats each ``burst" of photos from the same camera as a single observation, thereby better accommodating images that may not contain particularly distinctive scenes. Our experiments with two large datasets of major tourist cities clearly demonstrate the approach's advantages over traditional methods that recognize each photo individually, as well as a naive HMM baseline that lacks the proposed burst-based observation model. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2301 |
Date | 14 February 2012 |
Creators | Chen, Chao-Yeh |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.002 seconds