Cette thèse présente quelques résultats sur la théorie locale pour les espaces de Banach et d'opérateurs. La première partie consiste en l'étude de la propriété $\text{OUMD}$ pour l'espace colonne $C$. La deuxième partie traite de la propriété $\text{UMD}$ classique pour les espaces $L_p(L_q)$ itérés. Le résultat principal donne une construction nouvelle et très naturelle de treillis de Banach qui sont super-réflexifs et non-$\text{UMD}$: L'espace $L_p(L_q(L_p(L_q(\cdots$ itéré une infinité de fois est super-réflexif si $1 < p, q < \infty$ mais n'est pas $\text{UMD}$ si $p \ne q$.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00794951 |
Date | 13 December 2012 |
Creators | Qiu, Yanqi |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds