Nesse trabalho, estudamos a equação de Schrödinger não-linear com uma função potencial delta atrativa. As soluções para essa equação tem uma componente localizada e uma dispersiva. Além de estudar o comportamento das soluções dessa equação em espaços de Sobolev clássicos, mostramos algumas propriedades do grupo unitário em espaços Lp, L2 com peso, Sobolev com peso e assim obtemos alguns resultados de boa colocação local e global das soluções. O ponto central desta tese é mostrarmos a existência de uma variedade invariante centro que irá consistir de órbitas periódicas no tempo. / In this work, we study the nonlinear Schrodinger equation with an attractive delta function potential.The solutions to this equation have a localized and a dispersive component. In addition to studying the behavior of solutions of this equation in classical Sobolev space, we show some properties for the unitary group in Lp, weighted L2 and Sobolev spaces and so we get some results of local and global well-posedness of solutions. The central theme this thesis is to show the existence of a center invariant manifold, which will consist of time-periodic orbits.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30042019-150438 |
Date | 17 July 2014 |
Creators | Vieira, Ânderson da Silva |
Contributors | Pava, Jaime Angulo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds