Return to search

The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment

With increasing integration density of very large scale integrated (VLSI) devices, multilevel metallization technology is becoming more important than it used to be. In advanced logic devices, the interlayer dielectrics have increased to four or five layers. Silicon oxide films are used as interlayer film. One candidate for making interlayer film with a low dielectric constant is F-doped Silicon oxide (SiOF). Such films have a low dielectric constant and that moisture absorption is the main drawback in using this material. For this reason, we intend to dehydrate the SiOF films by thermal annealing treatment. It could improve the electrical properties of oxide films and obtain a reliable film with lower dielectric constant.
This is our purpose in this paper to explore the electrical and chemical properties of LPD-SiOF films with annealing treatment. The chemical and electrical properties can be controlled well within 250 ~ 450 ¢J annealing treatment. The LPD-SiOF film deposited at 40 ¢J with 0.8 M NH4OH incorporation and 350 ¢J annealing treatment obtain the best electrical results. The dielectric constant can drop to about 3.2, and the leakage current density can be improved to about 1¡Ñ10-7 A/cm2 under 1.5 MV/cm. Results of this study demonstrate that the SiOF films prepared by LPD with NH4OH incorporation followed by annealing treatment is suitable for IMD application.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0710103-033544
Date10 July 2003
CreatorsChang, Shu-Ming
ContributorsTsu-Hsin Chang, Jeng Gong, Jen-Sue Chen, Wen-Tai Lin, Ming-Kwei Lee
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0710103-033544
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0017 seconds