A container crane of STS-type, Ship To Shore, consists of a spreader hanging underneath a railrunning trolly. As the container is under the influence of wind, it is likely that it starts to turn in a torsional pendulum. This report handles how the torsional pendulum of a container crane can be damped. A number of different models have been developed to analyze how different placement of the actuators affects the system. Two differens types of controllers, LQG and MPC, have been developed and applied to these models. The different models and controlers were evaluated and compared by studying simulation results in timedomain. Moreover in order to make the simulations more realistic, a wind model has been developed and applied. The models and controllers have been analyzed with bodediagrams and sensitivity functions. The analyses shows clearly that the best placement of the actuators for control of the torsional pendulum on an STS-crane is in the trolly, pulling and relaxing the wires. This control is best handled by a state feedback control (LQG). Furthermore, the control should in this way, with addition of in the horizontalplane movable suspensions in the trolly, work acceptably in the whole operational area of a STS-crane.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2245 |
Date | January 2004 |
Creators | Bäck, Pär |
Publisher | Linköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | LiTH-ISY-Ex, ; 3484 |
Page generated in 0.0017 seconds