Anwendung von maschinellen Lernverfahren (ML) in der Produktionstechnik, in Zeiten der Industrie 4.0, stark angestiegen. Insbesondere die Datenverfügbarkeit ist an dieser Stelle elementar und für die erfolgreiche Umsetzung einer ML-Applikation Voraussetzung. Falls für eine gegebene Problemstellung die Datenmenge oder -qualität nicht ausreichend ist, können Techniken, wie die Datenaugmentierung, der Einsatz von synthetischen Daten sowie das Transferlernen von ähnlichen Datensätzen Abhilfe schaffen. Innerhalb dieser Ausarbeitung wird das Konzept des Transferlernens im Bereich das Radial-Axial Ringwalzens (RAW) angewendet und am Beispiel der Zeitreihenprognose
des Außendurchmessers über die Prozesszeit durchgeführt. Das Radial-Axial Ringwalzen ist ein warmumformendes Verfahren und dient der nahtlosen Ringherstellung.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88340 |
Date | 28 November 2023 |
Creators | Seitz, Johannes, Wang, Qinwen, Moser, Tobias, Brosius, Alexander, Kuhlenkötter, Bernd |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 17, urn:nbn:de:bsz:14-qucosa2-882872, qucosa:88287, urn:nbn:de:bsz:14-qucosa2-883418, qucosa:88341 |
Page generated in 0.0021 seconds