Return to search

Interpretable serious event forecasting using machine learning and SHAP

Accurate forecasts are vital in multiple areas of economic, scientific, commercial, and industrial activity. There are few previous studies on using forecasting methods for predicting serious events. This thesis set out to investigate two things, firstly whether machine learning models could be applied to the objective of forecasting serious events. Secondly, if the models could be made interpretable. Given these objectives, the approach was to formulate two forecasting tasks for the models and then use the Python framework SHAP to make them interpretable. The first task was to predict if a serious event will happen in the coming eight hours. The second task was to forecast how many serious events that will happen in the coming six hours. GBDT and LSTM models were implemented, evaluated, and compared on both tasks. Given the problem complexity of forecasting, the results match those of previous related research. On the classification task, the best performing model achieved an accuracy of 71.6%, and on the regression task, it missed by less than 1 on average. / Exakta prognoser är viktiga inom flera områden av ekonomisk, vetenskaplig, kommersiell och industriell verksamhet. Det finns få tidigare studier där man använt prognosmetoder för att förutsäga allvarliga händelser. Denna avhandling syftar till att undersöka två saker, för det första om maskininlärningsmodeller kan användas för att förutse allvarliga händelser. För det andra, om modellerna kunde göras tolkbara. Med tanke på dessa mål var metoden att formulera två prognosuppgifter för modellerna och sedan använda Python-ramverket SHAP för att göra dem tolkbara. Den första uppgiften var att förutsäga om en allvarlig händelse kommer att ske under de kommande åtta timmarna. Den andra uppgiften var att förutse hur många allvarliga händelser som kommer att hända under de kommande sex timmarna. GBDT- och LSTM-modeller implementerades, utvärderades och jämfördes för båda uppgifterna. Med tanke på problemkomplexiteten i att förutspå framtiden matchar resultaten de från tidigare relaterad forskning. På klassificeringsuppgiften uppnådde den bäst presterande modellen en träffsäkerhet på 71,6%, och på regressionsuppgiften missade den i genomsnitt med mindre än 1 i antal förutspådda allvarliga händelser.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-444363
Date January 2021
CreatorsGustafsson, Sebastian
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC IT, 1401-5749 ; 21007

Page generated in 0.0023 seconds