Découverte de motifs variables dans les grandes volumes de données audio. Les données audio, comme les documents oraux ou télévisés ou les données radio, sont composées par de nombreux sequences variables qui se répètent. La découverte de l'emplacement de ces répétitions, ci-après dénommé motifs, aide à déduire les propriétés structurelles de données acoustiques, ce qui facilite l'accès à la partie pertinente des données, et qui permets de résumér des grands documents par un ensemble de quelques éléments particuliers. Cette thèse détails nos efforts dans la conception et la mise en oeuvre d'une architecture non supervisée de découverte de motifs, et montres son applicabilité dans une tâche de decouverte des mots et des segments peu variables comme des chansons. En ce qui concerne la méthodologie, la découverte est réalisée d'une manière totalement non supervisée, ce qui signifie que aucune connaissance acoustiques ou linguistiques sur les données est fournie. Notre solution est basée sur l'intégration d'une technique de traitement de données séquentielle qui exploits la répétitivité local du motifs réel, et une variante segmentale de l'alignement temporel dynamique. En s'appuyant sur cette architecture, une technique pour la comparaison de sequences basée sur leurs matrices d autosimilarité de est introduite, pour améliorer la robustesse à la variabilité du signal de parole. En outre, l'applicabilité du système est démontrée sur une tâche de découverte de chansons sur plusieurs jours de flux audio. Pour adapter le système à cette tâche, des techniques pour accélérer le temps de calcul sont mises en oeuvre, basées sur le sous-échantillonnage des séquences.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00642956 |
Date | 25 January 2011 |
Creators | Muscariello, Armando |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds