Workpieces during cold forging fail basically due to ductile fracture. Ductile fracture can be predicted by damage models. In this study, various damage models such as Cockcroft & / Latham, McClintock, Freudenthal, Rice & / Tracy, Oyane, Ayada, Brozzo are investigated for their applicability to three workpiece materials: bearing steel (100Cr6), stainless steel (X5CrNiMo1810) and brass (CuZn39). The damage material parameters have been obtained by various tests such as tensile, standard compression, ring compression, compression with flanges and conical compression tests. The characterization has been assisted by finite element simulation of the various tests. It has been shown that the available damage models can predict the location of failure satisfactorily but are no able to predict the onset of failure quantitatively. Keywords: Formability Limit, Failure Criteria, Cold Forming, Surface Cracks, Finite Element Analysis
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/1178714/index.pdf |
Date | 01 July 2003 |
Creators | Kocak, Ozgur |
Contributors | Tekkaya, Erman |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0028 seconds