The marine environment is polluted by plastics of all forms and sizes. To reduce this serious pollution, it is important to identify its sources. This work focuses on the me-chanically induced breakdown of plastic into smaller fragments as a source of secondary microplastic, the time scale in which these microplastics are formed as well as the influ-ence of different environmental conditions like matrix conditions, collision potential or UV irradiation on the abrasion and fragmentation behaviour of plastic debris.
Since a systematic investigation of parameter influence is not possible in the environ-ment, laboratory experiments were developed to simulate natural conditions such as drift on the beach or wave action in the (low tide) surf and swash zone. For this purpose, selected plastic objects (PET bottles, HDPE caps, PS cups and LDPE bags) were ex-posed to collision and/or friction forces under different conditions. Besides visual in-spection of the destruction procedure, a number of different methods was used to char-acterize the process, e.g., counting of visible fragments (larger than 350 μm), micro-scopic analysis of the surface structure (binocular, SEM) and highly resolved analysis of particle numbers in the size range below 350 μm. In order to extract microplastic parti-cles (<5 mm) from the matrix, extraction methods were developed that were adapted to the given sample properties (matrix volume). Furthermore, based on the particle num-bers, the power law model was applied to analyse the fragmentation process in the con-text of the observed particle size distributions.
Plastic samples exhibited various signs of mechanical impairment in form of surface abrasion, cracks, tears, perforation, crumpling and finally fragmentation. The formation of fragments in different sizes (macro-, meso- and microplastics) was observed. The plastic objects were classified according to their degree of destruction to elucidate the effect of the different experimental conditions.
Results show that fragmentation and abrasion depend on individual properties of the plastic objects such as thickness or shape and on the potential of weakening the plastic structure by mechanical forces (collisions) or chemical degradation (UV irradiation). Environmental conditions also influence the plastic damage; surface abrasion plays a major role on the beach; fragmentation will most likely happen in the surf- and in the swash zone. However, both processes occur simultaneously and interact with each oth-er. Formation of secondary microplastics was shown to be likely in the marine environ-ment; it must therefore be considered as an important process in the light of microplastic contamination.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:osnadocs.ub.uni-osnabrueck.de:ds-202205317018 |
Date | 31 May 2022 |
Creators | Reuwer, Ann-Katrin |
Contributors | Dr. Jörg Klasmeier, Prof. Dr. Peter Fiener, PD Dr. Marcus Schulz |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | Attribution-NoDerivs 3.0 Germany, http://creativecommons.org/licenses/by-nd/3.0/de/ |
Page generated in 0.0026 seconds