Return to search

Welding and weld repair of nanostructured and amorphous materials

In recent years, nanostructured and amorphous metals have become more prominent in scientific research. Their unique characteristics and their vastly superior mechanical properties have lead to emerging technical applications however the use of these materials is only in its infancy. To further growth the industrial applications for these advanced materials, joining processes capable of maintaining the unique aspects of the microstructure are required. / Joining of two beveled plates has been accomplished by use of the Cold Spray process. This process uses a converging diverging nozzle to accelerate micron sized powder towards a substrate. The strength of the resulting joint has been compared to freeforms made of powder of the same composition. No significant difference was observed in the mechanical properties between the freeforms and the weldments and examination of the fracture surface showed that the strength of the interface is higher than the strength of the freeform itself. / A weld repair experiment has also been performed where the ElectroSpark Deposition process (ESD) has successfully been used to transfer amorphous material from an electrode to an amorphous substrate without crystallizing either material. This result is of crucial importance as it signifies that these extremely expensive and heat sensitive materials can be repaired when in-service wear causes damage. This process, due to its inherently fast cooling rate, has also successfully been used to transform a crystalline AlCoCe alloy into an amorphous deposit atop both amorphous and crystalline substrates.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112561
Date January 2007
CreatorsCadney, Sean.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mining and Materials Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002762708, proquestno: AAIMR51451, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds