Return to search

Maremoti in bacini limitati

The work of my thesis is focused on the impact of tsunami waves in limited basins.
By limited basins I mean here those basins capable of modifying significantly the tsunami signal with respect to the surrounding open sea. Based on this definition, we consider limited basins not only harbours but also straits, channels, seamounts and oceanic shelves.
I have considered two different examples, one dealing with the Seychelles Island platform in the Indian Ocean, the second focussing on the Messina Strait and the harbour of the Messina city itself (Italy).
The Seychelles platform is differentiated at bathymetric level from the surrounding ocean, with rapid changes from 2 km to 70 meters over short horizontal distances. The study of the platform response to the tsunami propagation is based on the simulation of the mega-event occurred on 26 December 2004. Based on a hypothesis for the earthquake causative fault, the ensuing tsunami has been numerically simulated. I analysed synthetic tide gauge records at several virtual tide gauges aligned along the direction going from the source to the platform. A substantial uniformity of tsunami signals in all calculated open ocean tide-gauge records is observed, while the signals calculated in two points of the Seychelles platform show different features both in terms of amplitude and period of the perturbation. To better understand the content in frequency of different calculated marigrams, a spectral analysis was carried out. In particular the ratio between the calculated tide-gauge records spectrum on the platform and the average tide-gauge records in the open ocean was considered. The main result is that, while in the average spectrum in the open ocean the fundamental peak is related to the source, the platform introduces further peaks linked both to the bathymetric configuration and to coastal geometry.
The Messina Strait represents an interesting case because it consists in a sort of a channel open both in the north and in the south and furthermore contains the limited basin of the Messina harbour. In this case the study has been carried out in a different way with respect to the Seychelles case. The basin was forced along a boundary of the computational domain with sinusoidal functions having different periods within the typical tsunami frequencies. The tsunami has been simulated numerically and in particular the tide-gauge records were calculated for every forcing function in different points both externally and internally of the channel and of the Messina harbour. Apart from the tide-gauge records in the source region that almost immediately reach stationarity, all the computed signals in the channel and in the Messina harbour present a transient variable amplitude followed by a stationary part. Based exclusively on this last part, I calculated the amplification curves for each site. I found that the maximum amplification is obtained for forcing periods of approximately 10 minutes.

Identiferoai:union.ndltd.org:unibo.it/oai:amsdottorato.cib.unibo.it:2005
Date11 June 2009
CreatorsGallazzi, Sara Carolina <1971>
ContributorsTinti, Stefano
PublisherAlma Mater Studiorum - Università di Bologna
Source SetsUniversità di Bologna
LanguageItalian
Detected LanguageEnglish
TypeDoctoral Thesis, PeerReviewed
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds