Return to search

Leveraging repeated games for solving complex multiagent decision problems

Prendre de bonnes décisions dans des environnements multiagents est une tâche difficile dans la mesure où la présence de plusieurs décideurs implique des conflits d'intérêts, un manque de coordination, et une multiplicité de décisions possibles. Si de plus, les décideurs interagissent successivement à travers le temps, ils doivent non seulement décider ce qu'il faut faire actuellement, mais aussi comment leurs décisions actuelles peuvent affecter le comportement des autres dans le futur. La théorie des jeux est un outil mathématique qui vise à modéliser ce type d'interactions via des jeux stratégiques à plusieurs joueurs. Des lors, les problèmes de décision multiagent sont souvent étudiés en utilisant la théorie des jeux. Dans ce contexte, et si on se restreint aux jeux dynamiques, les problèmes de décision multiagent complexes peuvent être approchés de façon algorithmique. La contribution de cette thèse est triple. Premièrement, elle contribue à un cadre algorithmique pour la planification distribuée dans les jeux dynamiques non-coopératifs. La multiplicité des plans possibles est à l'origine de graves complications pour toute approche de planification. Nous proposons une nouvelle approche basée sur la notion d'apprentissage dans les jeux répétés. Une telle approche permet de surmonter lesdites complications par le biais de la communication entre les joueurs. Nous proposons ensuite un algorithme d'apprentissage pour les jeux répétés en ``self-play''. Notre algorithme permet aux joueurs de converger, dans les jeux répétés initialement inconnus, vers un comportement conjoint optimal dans un certain sens bien défini, et ce, sans aucune communication entre les joueurs. Finalement, nous proposons une famille d'algorithmes de résolution approximative des jeux dynamiques et d'extraction des stratégies des joueurs. Dans ce contexte, nous proposons tout d'abord une méthode pour calculer un sous-ensemble non vide des équilibres approximatifs parfaits en sous-jeu dans les jeux répétés. Nous montrons ensuite comment nous pouvons étendre cette méthode pour approximer tous les équilibres parfaits en sous-jeu dans les jeux répétés, et aussi résoudre des jeux dynamiques plus complexes. / Making good decisions in multiagent environments is a hard problem in the sense that the presence of several decision makers implies conflicts of interests, a lack of coordination, and a multiplicity of possible decisions. If, then, the same decision makers interact continuously through time, they have to decide not only what to do in the present, but also how their present decisions may affect the behavior of the others in the future. Game theory is a mathematical tool that aims to model such interactions as strategic games of multiple players. Therefore, multiagent decision problems are often studied using game theory. In this context, and being restricted to dynamic games, complex multiagent decision problems can be algorithmically approached. The contribution of this thesis is three-fold. First, this thesis contributes an algorithmic framework for distributed planning in non-cooperative dynamic games. The multiplicity of possible plans is a matter of serious complications for any planning approach. We propose a novel approach based on the concept of learning in repeated games. Our approach permits overcoming the aforementioned complications by means of communication between players. We then propose a learning algorithm for repeated game self-play. Our algorithm allows players to converge, in an initially unknown repeated game, to a joint behavior optimal in a certain, well-defined sense, without communication between players. Finally, we propose a family of algorithms for approximately solving dynamic games, and for extracting equilibrium strategy profiles. In this context, we first propose a method to compute a nonempty subset of approximate subgame-perfect equilibria in repeated games. We then demonstrate how to extend this method for approximating all subgame-perfect equilibria in repeated games, and also for solving more complex dynamic games.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/22389
Date17 April 2018
CreatorsBurkov, Andriy
ContributorsChaib-Draa, Brahim, Marchand, Mario
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format179 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0024 seconds