The lactoperoxidase (LPO) antimicrobial system has been shown to play an important role in maintaining sterile conditions in several tissues including the mammary gland, the salivary gland, and the airway. The LPO system in the airway consists of the enzyme LPO and its substrates hydrogen peroxide and an anion. LPO catalyzes the oxidation of a halide or pseudohalide ion for example SCN-or I- by hydrogen peroxide producing a product, OSCN- or OI- which have antibacterial, antifungal, and antiviral properties. In order to have a functional antimicrobial system all the components need to be present at appropriate concentrations. The LPO system has been suggested to be deficient in cystic fibrosis. There are three possible regulatory mechanism of this antimicrobial system and these involve the secretion and availability of the three components of the LPO system in the luminal fluid. The studies presented in this dissertation examine two of the possible regulatory mechanisms of the LPO system in the airway; the availability and transport of SCN- to the luminal surface, and the expression of LPO. The knowledge obtained from these studies could be utilized to develop treatments to control infection in diseases characterized by chronic infections such as cystic fibrosis.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1003 |
Date | 14 December 2007 |
Creators | Fragoso, Miryam Araceli |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0022 seconds