Return to search

Algoritmos de aproximação de raízes quadradas

Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T15:03:54Z
No. of bitstreams: 1
Danilo Albuquerque de Campos.pdf: 453917 bytes, checksum: 1b07ec11128857b2e96af37543e335fe (MD5) / Made available in DSpace on 2017-03-28T15:03:55Z (GMT). No. of bitstreams: 1
Danilo Albuquerque de Campos.pdf: 453917 bytes, checksum: 1b07ec11128857b2e96af37543e335fe (MD5)
Previous issue date: 2014-08-22 / In this work we are interested in showing three algorithms rational approximation of square roots by methods unknown or underutilized by teachers of elementary and secondary education. We begin by defining numerical sequence and convergence of sequences, will discuss the need to expand the concept of rational number and demonstrate the irrationality of the diagonal of a square. Prove an important theorem known in the literature as Dirichlet’s theorem and finally elencaremos three methods of approximating the square roots of natural non-perfect square numbers, very simple to be worked on in the classroom that are rational algorithm aproximção of Hiero of Alexandria, Theon’s Ladder and the Pell-Fermat equation, sende latter discursão fundamental to who will perform on the relationship of the three methods presented. / Neste trabalho estamos interessados em mostrar três algoritmos de aproximação racional de raízes quadradas por métodos pouco utilizados ou desconhecidos pelos professores do ensino fundamental e médio. Iniciaremos definindo sequência numérica e convergência de sequências, discutiremos sobre a necessidade de ampliação do conceito de número racional e demonstraremos a irracionalidade da diagonal de um quadrado. Provaremos um importante Teorema conhecido na literatura como o Teorema de Dirichlet, e por fim elencaremos três métodos de aproximação de raízes quadradas de números naturais não quadrados perfeitos, muito simples de serem trabalhados em sala de aula que são: O algoritmo de aproximação racional de Hierão de Alexandria, A escada de Theon e a Equação de Pell-Fermat, sendo este último fundamental para discussão que iremos realizar sobre a relação dos três métodos apresentados.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede2/6699
Date22 August 2014
CreatorsCAMPOS, Danilo Albuquerque de
ContributorsNEVES, Rodrigo José Gondim
PublisherUniversidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Matemática (PROFMAT), UFRPE, Brasil, Departamento de Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE
Rightsinfo:eu-repo/semantics/openAccess
Relation7256355350190039125, 600, 600, 600, -6155401143231123537, -7090823417984401694

Page generated in 0.003 seconds