Return to search

Comparison of Bare Root vs. Potted Plants, Species Selection, and Caging Types for Restoration of a Prairie Wetland, and Quantitative Analysis and Descriptive Survey of Plant Communities and Associations at Lewisville Lake Environmental Learning Area (LLELA), Lewisville, TX

Lewisville Lake Environmental Learning Area (LLELA) is an 809-hectare property in Denton County, TX. A study of the vegetation community identified 466 species in 104 families, with 25% of the species from only two families, Asteraceae and Poaceae. The property demonstrates the characteristics of an early successional community, dominated by weedy species. Prairie communities are dominated by Johnson grass and ragweed, with climax tall grass prairie communities only in areas that have been planted with native grass seed. Forest communities are similarly in an early successional stage, dominated by the hackberry-elm-ash alliance, with small remnants of native Cross Timbers found in isolated patches. Species richness and diversity were highest in the forests and lowest in the wetlands; evenness, though not different across ecosystems, demonstrated a strong seasonal component. The species list was compared with previously reported lists for Denton County, and 256 species identified had not been previously reported for the county. A wetland restoration study was conducted to determine if there was a difference in survival and growth between potted transplants with intact root systems and bare-root transplants. Two different mesh sizes were used for protection, and the success of the different caging was evaluated. Of eight species, only four survived through the second growing season. There was no significant difference in the success of the propagule types for Sagittaria latifolia. The treatments planted with intact root systems showed significantly higher growth and reproduction than the bare-root treatments for Eleocharis quadrangulata, Heteranthera dubia, and Vallisneria americana. There was no survival recorded in the coarse mesh cages, likely due to the presence of crayfish that are able to get through the coarser mesh and feed on the transplants.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc3700
Date05 1900
CreatorsBuckallew, Robin R.
ContributorsDickson, Kenneth L., Dick, Gary O., Hudak, Paul F., La Point, Thomas W., 1949-, Steigman, Kenneth
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Buckallew, Robin R., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0021 seconds