Return to search

Numerical studies of bypass transition in the Blasius boundary layer

<p>Experimental findings show that transition from laminar toturbulent ow may occur also if the exponentially growingperturbations, eigensolutions to the linearised disturbanceequations, are damped. An alternative non-modal growthmechanism has been recently identi fied, also based on thelinear approximation. This consists of the transient growth ofstreamwise elongated disturbances, with regions of positive andnegative streamwise velocity alternating in the spanwisedirection, called streaks. These perturbation are seen toappear in boundary layers exposed to signi ficant levels offree-stream turbulence. The effect of the streaks on thestability and transition of the Blasius boundary layer isinvestigated in this thesis. The analysis considers the steadyspanwise-periodic streaks arising from the nonlinear evolutionof the initial disturbances leading to the maximum transientenergy growth. In the absence of streaks, the Blasius pro filesupports the viscous exponential growth of theTollmien-Schlichting waves. It is found that increasing thestreak amplitude these two-dimensional unstable waves evolveinto three-dimensional spanwiseperiodic waves which are lessunstable. The latter can be completely stabilised above athreshold amplitude. Further increasing the streak amplitude,the boundary layer is again unstable. The new instability is ofdifferent character, being driven by the inectional pro filesassociated with the spanwise modulated ow. In particular, it isshown that, for the particular class of steady streaksconsidered, the most ampli fied modes are antisymmetric andlead to spanwise oscillations of the low-speed streak (sinuousscenario). The transition of the streak is then characterisedby the appearance of quasi-streamwise vorticesfollowing themeandering of the streak.</p><p>Simulations of a boundary layer subjected to high levels offree-stream turbulence have been performed. The receptivity ofthe boundary layer to the external perturbation is studied indetail. It is shown that two mechanisms are active, a linearand a nonlinear one, and their relative importance isdiscussed. The breakdown of the unsteady asymmetric streaksforming in the boundary layer under free-stream turbulence isshown to be characterised by structures similar to thoseobserved both in the sinuous breakdown of steady streaks and inthe varicose scenario, with the former being the mostfrequently observed.</p><p><b>Keywords:</b>Fluid mechanics, laminar-turbulent transition,boundary layer ow, transient growth, streamwise streaks,lift-up effect, receptivity, free-stream turbulence, secondaryinstability, Direct Numerical Simulation.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3517
Date January 2003
CreatorsBrandt, Luca
PublisherKTH, Mechanics, Stockholm : Mekanik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationTrita-MEK, 0348-467X ; 2003:04

Page generated in 0.0018 seconds