Return to search

Free-edge effects around holes in composite laminates

The free-edge effect around holes in composite laminates has recieved less attention than the straight free-edge problem. Mathematical analysis of free-edge stresses around holes have mostly been numerical. The present work develops a simple approximate solution of the hole problem which allows for low cost computation. The method assumes that only the deviations of the ply stresses from the homogeneous plate solution of in-plane stresses around holes contribute to the interlaminar effects. It is then possible to use an equilibrium argument to calculate the interlaminar stresses at the hole boundary. The results obtained show good agreement with numerical results from the literature for a wide range of laminates, predicting the general shapes and signs of interlaminar stress' distributions reasonably well.
Experimental observations of delamination found in the literature also agree with the present results. An experimental study of the damage development around holes under quasi-static loading for a number of different laminates is reported. The delamination observed at the hole boundaries are found to be in good qualitative agreement A simple semi-quantitative correlation between these results and a stress combination function of the three interlaminar stress components is also derived. The problems associated with the development of reliable methods of delamination prediction are also discussed. / Applied Science, Faculty of / Mining Engineering, Keevil Institute of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/27305
Date January 1986
CreatorsGoonetilleke, Hemaguptha Dharmaraj
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0013 seconds