Meshfree methods provide a more practical approach to solving problems involving large deformation and modeling fracture compared to the Finite Element Method (FEM). However meshfree methods are more computationally intensive compared to FEM, which can limit their practicality in engineering. Meshfree methods also lack a clear boundary definition, restricting available visualization techniques. Determining particle locations and attributes such that a consistent approximation is ensured can be challenging in meshfree methods, especially when employing h-refinement. The primary objective of this work is to address the limitations associated with computational efficiency, meshfree domain discretization, and h-refinement, including both placement of particles as well as determination of particle attributes. To demonstrate the efficacy of these algorithms, a model predicting the failure of laminated composite structures using a meshfree method will be presented.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8541 |
Date | 22 June 2018 |
Creators | Olliff, James |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Page generated in 0.0183 seconds