Landfill leachate is considered as a complex wastewater with various organic and inorganic species which must meet strict discharge standards before its release. Due to such high concentration of diverse pollutants, leachate is low in biodegradation; therefore, a proper usage of physicochemical treatments is required. In this study, membrane distillation (MD) has been used along with Fenton treatment process for pre-coagulation to achieve an effective removal of contaminants. MD is a technology derived with vapor pressure difference across the hydrophobic membrane which traps the feed-wastewater vapor at the entrance of the hydrophobic side before permeation. In order to modify and assist in membrane technology's common drawback, which is dealing with foulants, Fenton oxidation is coupled in the leachate treatment process. Fenton is reserved to be the most effective for leachate treatment and is widely used due to its simple operation and low costs. Fenton oxidation was able to lessen the chemical oxygen demand (COD) concentration of leachate up to 55% while increasing the conductivity and reducing the concentration of NH4-N. The membrane flux and volume had a significant increase with a use of lower COD leachate after Fenton treatment coupled with MD. / Master of Science / Landfilling has been recognized as a principal disposal process of municipal solid wastes globally over the past decades, and this disposal method has been one of the leading concerns for a continuous production of landfill leachate. Leachate is considered as a complex wastewater with a variety of organic and inorganic species which must meet strict discharge standards before its release. Due to such high concentration of diverse pollutants, leachate is low in biodegradation; therefore, a proper usage of physicochemical treatments is required. In this study, membrane distillation (MD) has been used along with Fenton treatment process for pre-coagulation to achieve an effective removal of contaminants.
MD is a technology derived with vapor pressure difference across the hydrophobic membrane which traps the feed-wastewater vapor at the entrance of the hydrophobic side before permeation. MD has several advantages which include reduced operating temperature compared to conventional distillation processes, fewer requirements of membrane cleaning, and lower operating hydraulic pressure than other conventional pressure-driven membrane processes such as reverse osmosis (RO). This technology has a common drawback along with other membrane-required technologies which is dealing with foulants. For a reduction in membrane fouling, Fenton oxidation is coupled in the leachate treatment process. Fenton is reserved to be the most effective for leachate treatment and is widely used due to its simple operation and low costs.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/96701 |
Date | 03 February 2020 |
Creators | Chung, Kyung Sun |
Contributors | Environmental Science and Engineering, He, Zhen, Wang, Zhiwu, Dietrich, Andrea M. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds