Whitetop Mountain is Virginia's second highest peak and hosts two globally rare, insular ecosystems: a southern Appalachian grass bald and a red spruce-dominated forest. These areas provide important ecosystem services and habitat for rare and endangered species. They are highly prized for their cultural value and recreational areas that support nearby rural economies. This thesis investigated spatial patterns in both ecosystems on Whitetop. We documented a 24.73% decrease of in the extent of the southern Appalachian grass bald across 68 years through analysis of historical aerial photography. In the red spruce-dominated forest, we used a consumer grade unmanned aerial vehicle (UAV) to survey the health of all trees within a 46 ha sample plot. We assessed (dead, dying, healthy) over 9,000 individual trees based on visual patterns in the imagery and produced spatial products that will inform land managers about where resources are most needed. About 7.4% of the red spruce trees in our study area were classified as dead or dying. A model relating spruce mortality to biophysical landscape factors identified no single predictive factor related to mortality. The addition of optical information from the UAV imagery into the model proved utility for remotely-sensed data in identification of dead spruce within the forest canopy at Whitetop and possibly in other similarly structured forests. This research contributed to the limited body of knowledge surrounding the decline of both southern Appalachian grass balds and red spruce forests and provided technical insights for future mortality monitoring. / Master of Science / This thesis investigates land cover changes in two rare ecosystems on Whitetop Mountain, Virginia. The mountain has important biological significance and is a cultural landmark. The high-elevation summit hosts plant and animal species characteristic of northern climates, including a red spruce-dominated forest and a southern Appalachian grass bald. This work documented a 24.73% decrease in the size of the rare southern Appalachian grass bald ecosystem at Whitetop Mountain over 68 years and discussed potential drivers and proposed management for conservation. We also successfully used a camera-equipped unmanned aerial vehicle (drone) to produce high quality imagery for spruce mortality detection within the red spruce forest. Of over 9,000 standing spruce trees, 7.4% were categorized as either dead or dying. We built a predictive model to investigate the relationship between mortality and biophysical environmental factors, but did not identify a single causal factor. A second model that included the color band information from the drone camera revealed that different types of aerial imagery could play a valuable role in detection of tree mortality in forests of similar structure. Overall this research contributes to the body of knowledge surrounding the decline of both southern Appalachian grass bald and red spruce ecosystems and provides insights for management.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106838 |
Date | 12 June 2020 |
Creators | Harris, Ryley Capps |
Contributors | Geography, Kennedy, Lisa M., Thomas, Valerie A., Pingel, Thomas |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Coverage | Virginia, United States |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds