The aim of the thesis is to develop and validate subgrid-scale models that are relevant for large eddy simulations of complex flows including scalar mixing. A stochastic Smagorinsky model with adjustable variance and time scale is developed by adding a stochastic component to the Smagorinsky constant. The stochastic model is shown to provide for backscatter of both kinetic energy and scalar variance without causing numerical instabilities. In addition, new models for the subgrid-scale stress and passive scalar flux are derived from modelled subgrid scale transport equations. These models properly account for the anisotropy of the subgrid scales and have potentials wall bounded flows. The proposed models are validated in wall bounded flows with and without rotation and show potential or significantly improve predictions for such cases. / <p>QC 20100826</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4809 |
Date | January 2008 |
Creators | Marstorp, Linus |
Publisher | KTH, Mekanik, KTH, Linné Flow Center, FLOW, Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-MEK, 0348-467X ; 2008:06 |
Page generated in 0.0019 seconds