Many interesting physical processes produce non-interacting particles that could only be measured using the missing transverse momentum. The increase of the proton beam intensity in the Large Hadron Collider (LHC) provides sensitivity to rare physics processes while inevitably increasing the number of simultaneous proton collisions in each event. The missing transverse momentum (MET) is a variable of great interest, defined as the negative sum of the transverse momentum of all visible particles. The precision of the MET determination deteriorates as the complexity of the recorded data escalates. Given the current complexity of data analysis, a new algorithm is developed to effectively determine the MET. Several well-understood physics processes were used to test the effectiveness of the newly designed algorithm. The performance of the new algorithm is also compared to that of the standard algorithm used in the ATLAS experiment. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/11035 |
Date | 19 August 2019 |
Creators | Li, Zhelun |
Contributors | Kowalewski, Robert V. |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.0024 seconds