We have developed simple and inexpensive laser systems
using grating-feedback diode lasers with electronic feedback to the
injection current. These grating-feedback lasers can be
continuously scanned up to 10 GHz and have a linewidth of 150 kHz.
The three electronic frequency-stabilization systems we developed
use polarization spectroscopy, etalon transmission and modified
heterodyne signals as the frequency discriminators to drive an
integrating servo control circuit. These laser systems are used for
laser cooling and trapping of rubidium and atomic beam diagnostics.
The rubidium D��� line at 780 nm is a strong, cycling transition
that can be used for laser cooling and trapping. We use chirped
cooling and Zeeman-tuned cooling to slow atoms from a thermal
atomic beam. These atoms are loaded into a two-dimensional
magneto-optic trap, or funnel. Using a frequency offset of the
trapping lasers, the atoms are ejected from the funnel at a
controllable velocity. The diode laser systems we have developed
are a central component of this rubidium atomic funnel. We will
use the funnel's bright, cold atomic beam as a source for matter-wave
interferometry. We also developed an ionization detector to
measure the flux and the spatial profile of the atomic beam when
the background of scattered light makes fluorescent detection
difficult. / Graduation date: 1997
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/34502 |
Date | 05 August 1996 |
Creators | Silva, Nancy J. |
Contributors | McIntyre, David H. |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0385 seconds