This thesis addresses particular topics in the field of the length metrology for nanometrology. Nanometrology deals with dimensional measurements of micro- and nanostructures with a high spatial resolution. It typically combines a microscope imaging with a precise coordinate measurement, usually capable of nanometre resolution using the state-of-art laser interferometry techniques. The development in this field is driven, among others, by emerging advanced nanotechnologies that demand to push further the capabilities and limits of the interferometric techniques to make the nanometre-level dimensional measurement of nanostructures possible. The principal limitations of current systems are the environmental conditions and especially the fluctuations in the refractive index of air. The theoretical part of this thesis aim at analysis of individual parts of laser interferometer. I oriented myself on the study of their advantages/disadvantages and further also the possibilities of their industrial applications. The second part of the thesis presents my work that focused on the influence of the refractive index of air (RIA) on the measurement uncertainty. I experimentally demonstrated an interferometric system with a self-cancellation RIA fluctuations: a transparent photodetector is used for the measurement of the standing wave along the axis of a passive resonator, where the resonator also serves as a reference for the laser wavelength stabilisation. Another optical arrangement, based on a setup of several Michelson interferometers, represents a combination of an interferometer and a refractometer into a single system. This setup was used to study the behaviour of the ambient airflow with respect to the optical path difference and physical separation of the interferometer’s and refractometer’s path. Based on the experimental results I proposed new arrangements for shape measuring interferometers, which combine length interferometry and a tracking refractometer for the direct compensation of RIA fluctuations with geometrically adjacent optical beams. The results indicate an improvement in RIA fluctuation induced uncertainty by a factor of 100. Third part describes the design and implementation of interferometric systems for specific applications. For the industrial environment I developed a compact interferometric displacement gauge which is designed to allow nanometre level measurement using a simplified interferometer construction. For coordinate measurement of the position of the sample up to six degrees of freedom, I realised a compact modular interferometric system, which represents a unique setup together with a stabilised laser source. To measure the position of the sample in an electron beam writer chamber, I designed and implemented a differential interferometer that works in the near infrared domain and uses a new detection method developed for this system. In the fourth part I describe the realisation of a high-speed interferometer with a differential arrangement, which allows evaluation of high-cycle fatigue in material engineering. This method of studying high-cycle fatigue should be beneficial for both the basic research and the engineering practice.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:364822 |
Date | January 2018 |
Creators | Holá, Miroslava |
Contributors | Klapetek,, Petr, Mrňa, Libor, Lazar, Josef |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds