<p> Lithium niobate is an important photonic material that has potential applications in MEMS. Unfortunately, it is difficult to process using conventional methods. This thesis is an exploratory study to determine the viability of using a femtosecond laser as a fabrication tool for lithium niobate. Unexpectedly, a rich range of behaviour, likely arising from the complex material structure and composition, was discovered. Depending on the processing conditions, it was demonstrated that machining can either result in deep, high-aspect ratio grooves with minimal surrounding damage or dramatic modification of the lithium niobate to great depths with very little material removal.</p> <p> When machining grooves, increasing the effective number of pulses Neff (i.e. decreasing cutting speed) gave rapidly increasing ablation depths until a threshold was reached, after which the grooves were nearly filled with amorphous material. The depth of these amorphous channels rapidly saturates and becomes nearly independent of Neff. The ablation depth dependence on fluence showed gentle and strong ablation regimes. The amorphous channel depth depended almost linearly on fluence. Subsequent laser passes over amorphous channels eventually removed the amorphous material from the groove, indicating a dependence on the time between laser pulses. Crystal orientation was not a factor.</p> <p> The results are understood in terms of incubation and wave guiding. The first pulses ablate some material and incubate a channel of material below the surface. With further pulses, increasing incubation accelerates ablation. At the threshold Neff, the absorption coefficient has increased enough that the next pulse is able to melt a
significant amount of material, which expands to fill the groove. It is suggested that, initially, the amorphous material is able to guide subsequent pulses to the bottom of the channel, resulting in a very slowly increasing depth with Neff. Subsequent passes cause ablation once again since compositional changes in the amorphous material have relaxed. Irradiated samples appear thermally reduced, which would create colour centres leading to increased absorption and thus incubation.</p> <p> Femtosecond lasers are indeed able to create MEMS structures. Multiple passes in the ablation regime yielded deep grooves, with laser polarization perpendicular to the groove giving the best results. Fabrication of micro-cantilevers and bridges was demonstrated.<p> / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21756 |
Date | 02 1900 |
Creators | Driedger, Paul T. |
Contributors | Kleiman, Rafael N., Preston, John S., Engineering Physics |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds