The post-weld-shift (PWS) introduced in the butterfly laser packaging
is investigated in this study. The elastic-plastic-thermal coupled finite
element model is employed in the stress and deformation analyses. The
temperature dependent material properties are used to calculate the
residual stresses and the post-weld shift distributions during the
packaging process. The finite element package ¡¥MARC¡¦ is used in this
study. And the commercial optical software, i.e. ¡¥Zemax¡¦ is also employed
in laser power coupling efficiency simulation.
The variations of laser welding sequence, Nd-YAG pulse laser power,
and initial ferrule¡¦s alignment position on PWS for butterfly laser
packaging are studied and discussed in this work. The results indicated
adjust the sequence and pulse laser power properly can improve the PWS
in butterfly packing significantly. Besides, the PWS correction technique,
i.e. the ¡¥Laser Harmering¡¦, is also illustrated in this study. The simulate
results showed that proper arrange the welding processes may improve
the coupling efficiency over 75¢M.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0719104-235600 |
Date | 19 July 2004 |
Creators | Chiu, Hsien-huan |
Contributors | none, none, none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0719104-235600 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds