Return to search

Light scattering from ultracold atomic gases

Systems of ultracold atoms in optical potentials have taken a place at the forefront of research into many-body atomic systems because of the clean experimental environment they exist in and the tunability of the system parameters. In this thesis we study how light scattered from these ultracold atomic gases reveals information about the state of the atomic gas and also leads to changes in that state. We begin by investigating the angular dependence of light scattered from atoms in optical lattices at finite temperature. We demonstrate how correlations in the superfluid and Mott insulator states affect the scattering pattern, and we show that temperature affects the number of photons scattered. This effect could be used to measure the temperature of the gas, however, we show that when the lattice band structure is taken into account the efficiency of this temperature measurement is reduced. We then investigate light scattering from small optical lattices where the Bose-Hubbard Hamiltonian can be solved exactly. For small lattices, scattering a photon from the atomic system significantly perturbs the atomic system. We develop a model of the evolution of the many-body state that results from the consecutive scattering and detection of photons. This model shows that light scattering pushes the system towards eigenstates of the light scattering measurement process, in some cases leading to a superposition of atomic states. In the second half of this thesis we study light scattering that depends on the internal hyperfine spin state of the atoms, in which case the scattered light can form images of the spatial atomic spin distribution. We demonstrate how scattering spatially correlated light from the atoms can result in spin state images with enhanced spatial resolution. We also show how using spatially correlated light can lead to direct measurement of the spatial correlations of the atomic spin distribution. We then apply this theory of spin-dependent light scattering to the detection of different spin states of ultracold gases in synthetic magnetic fields. We show that it is possible to distinguish between ground states in the quantum Hall regime using light scattering. Moreover, we show how noise correlation analysis of the spin state images can be used to identify the correlations between atoms and how a variant on phase-contrast imaging can reveal the relationship between the atomic spins.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547585
Date January 2010
CreatorsDouglas, James Stewart
ContributorsWalmsley, Ian : Burnett, Keith
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:0aa4ede3-8b6e-45d4-a112-a2d18271307c

Page generated in 0.0018 seconds