We have studied a continuous aerosol process for producing oxide nanoparticles with sizes of 10-60 nm that are decorated with smaller 1-3 nm metallic nanoparticles. Such particles may be useful in a number of areas including catalysis and as contrast enhancement agents in biomarkers. To produce the oxide nanoparticle carriers, an aerosol of 1-10 [micrometer] oxide particles are ablated using an excimer laser. The resulting oxide nanoparticle aerosol is then mixed with 1-2 [micrometer] metallic particles and this mixed aerosol is ablated a second time. The oxide nanoparticles are too small to ablate but act as seeds for the nucleation of metallic nanoparticles on the surface of the oxide. The nanoparticle sizes can be varied by changing the gas type or gas pressure in the aerosol. We demonstrate the feasibility of such an approach using two oxides, SiO₂ and TiO₂, and two metals, Au and Ag. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2009-08-348 |
Date | 16 February 2011 |
Creators | Nahar, Manuj |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0021 seconds