Return to search

Optical wave propagation through non-Kolmogorov atmospheric turbulence

The effect of atmospheric turbulence on an optical wave can seriously degrade the reliability of an optical communication link. One atmospheric effect is scintillation, which is caused by index of refraction fluctuations. Several observations of atmospheric turbulence statistics suggest a modest change in the power law behavior of Kolmogorov' s power spectral density model. The corresponding index of refraction fluctuations are assumed to have spatial power spectra that obey power laws that deviate somewhat from the classical - 11/3 power law. The purpose of this study is to develop analytical models for scintillation and other wave propagation statistics based on non-classical power spectra. This involves random processes, asymptotic theory, and evaluating integrals involving special functions (Bessel functions and hypergeometric functions). Mean irradiance and scintillation index models are derived for a Gaussian-beam wave propagating through an atmosphere experiencing weak irradiance fluctuations. Also, the wave structure function for an unbounded plane wave and spherical wave is derived under weak turbulence theory. Using the derived plane wave structure function, the scintillation index for both a plane and spherical wave experiencing strong irradiance fluctuations is calculated. In addition, a scintillation model that is valid under all irradiance fluctuation conditions is derived for both a plane and spherical wave propagating through non-Kolmogorov atmospheric turbulence.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-5637
Date01 January 2004
CreatorsLiptack, Paul Anthony
PublisherUniversity of Central Florida
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceRetrospective Theses and Dissertations

Page generated in 0.002 seconds