Return to search

Etude du comportement dynamique de matériaux sous choc laser subpicoseconde

Les chocs induits par laser de puissance permettent d'investir le comportement hautement dynamique des matériaux, d'un grand intérêt tant pour la recherche fondamentale que pour l'industrie. L'évolution des technologies laser ces dernières années a permis d'accéder à des régimes plus courts, en dessous de la picoseconde. L'objectif de ce travail, résultat d'une collaboration entre l'institut P', le PIMM et le CEA‐DAM est de caractériser le comportement sous choc de matériaux métalliques (Aluminium, Tantale,...) dans ce régime ultra‐bref, conduisant à des sollicitations dynamiques extrêmes (>107s‐1). L'étude repose sur la comparaison et la validation de modèles numériques à des résultats expérimentaux obtenus sur la chaîne 100TW du LULI. Cette caractérisation passe dans un premier temps par l'étude de l'interaction laser‐matière afin caractériser le chargement équivalent en pression sur la cible. Les processus en régime ultra‐bref sont différents de ce qui est connu en régime nanoseconde : en effet, l'échelle de temps, quelques picosecondes, est du même ordre que bon nombres de phénomènes moléculaires tel que le déséquilibre électrons‐ions. Ensuite, nous avons étudié l'évolution de l'onde de choc et son amortissement, très prononcé dans ce régime. L'écaillage dans une telle configuration se produit par couches très minces (quelques μm) et régulières dans ce régime. L'endommagement obtenu est caractérisé par la mesure VISAR. Les résultats obtenus par observations post‐mortem jusqu'à présent montrent que plus l'épaisseur de cible est faible, plus l'épaisseur d'écaille diminue, pouvant atteindre l'échelle du micron. Dans le cadre de la modélisation de l'endommagement et le dimensionnement des critères d'endommagement utilisés et éprouvés en régime nanoseconde (Kanel), des essais à différentes épaisseurs de cible ont été réalisés afin d'observer les conséquences d'une variation de vitesse de déformation sur l'endommagement, et généraliser le modèle de Kanel au régime ultra‐bref, et plus généralement en fonction de la vitesse de déformation. L'ensemble des résultats relatifs à l'endommagement est généralisé à des configurations 2D, permettant notamment de caractériser l'évolution du diamètre d'écaille. En parallèle, des simulations microscopiques par dynamique moléculaire de choc laser ultra‐bref sur des cibles monocristallines de Tantale à l'échelle du micron ont été menées au CEA‐DAM donnent un point de vue complémentaire des processus microscopiques liés à l'endommagement à des vitesses de déformation aux abords de la limite de cohésion théorique. Les résultats obtenus sur les chocs ultra‐brefs et 2D présentent un grand intérêt pour le développement du test d'adhérence de revêtements par choc laser (LASAT), offrant la possibilité de nouvelles extensions pour le procédé LASAT. Par exemple, de nombreux domaines industriels utilisent des revêtements micrométriques (optique, électronique, ...) mais il existe peu de méthodes pour caractériser leurs propriétés avec fiabilité. Des essais de transposition de LASAT en régime femtoseconde sur des cellules photovoltaïques ont démontré la possibilité d'éjecter des revêtements submicrométriques et caractériser leur seuil d'adhérence.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00564182
Date10 December 2010
CreatorsCuq-Lelandais, Jean-Paul
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds