Les processus de radioluminescence, phénomène aussi appelé scintillation, sont plutôt bien décrits théoriquement, que ce soit pour les matériaux organiques que pour les matériaux inorganiques. Cependant, le cas des structures non-cristallines dopées d'ions de lanthanides présente des particularités surprenantes. On présente l'étude des spectres d'émission par radioluminescence qui montrent des raies spectrales dues à une propagation d'exciton, ce qui devrait correspondre à des structures cristallines. Après avoir exposé les différentes théories liées à l'excitation des matériaux et à leur production de lumière, l'hypothèse d'un procédé de fluorescence induite par radioluminescence est proposée comme une excitation optique des ions trivalents de lanthanides par la radioluminescence émise par le matériau irradié. Différents calculs et simulations numériques ont permis de prédire le comportement des matériaux soumis à des particules ionisantes, telles que des y ou des ions accélérés. Plusieurs matériaux, comme l'ED2 dopé de néodyme (NdIV:ED2) ou le verre poreux dopé d'erbium (ErIV:VP), sont aussi étudiés expérimentalement. Un échantillon de titane saphir (Ti:Sa) a été utilisé comme référence en raison de sa structure cristalline. L'étude expérimentale de ces matériaux exposés à des ions de H2+ , de 4He++ et de 12C ++ permet d'observer la fluorescence induite par radioluminescence, ainsi que d'évaluer son intensité relative par rapport aux faisceaux incidents. Une étude de temps de vie de certaines des transitions atomiques concernées, ainsi que de leur dépendance à l'intensité de l'exposition permet d'envisager quelques applications, que ce soit pour des détecteurs à particules ionisantes émettant dans l'infrarouge, ou que ce soit pour de l'excitation ionisante pour le pompage laser. / Two processes explain radioluminescence of organic and inorganic materials. Exposition of organic materials to ionising particles leads to the excitation of the molecules of the matrix. The relaxation leads to photon emission. In the case of the inorganic materials a self-trapped exciton (STE) propagates in the crystal until it reaches and excites an impurity; the relaxation of this impurity may be radiative. We observed that lanthanides (ErlV or NdIV) doped materials (porous or ED2 glasses) show some characteristic emission rays. The spectra are quite similar to the expected ones for inorganic materials, although these materials are organic. We developed a model describing how the radioluminescence of the organic materials excites the lanthanide ions, and then the observed radioluminescence emission spectra can be explained by the Judd-Ofelt theory. Several materials have been studied: erbium doped porous glass (ErIV:PG), neodymium doped ED2 glass (NdIV:ED2), and also a sample of titan sapphire (Ti:Sa) as a comparison sample for inorganic materials. These samples have been exposed to H2+ , 4He++ , 12C ++ ions accelerated up to 4.1MeV with a Van de Graaff accelerator. The emission spectra have been measured and a study of the luminescence Lifetime of the material has been made. Luminescence Lifetime of the characteristic rays is dependent of the radiation dose. These observations allow us to conclude that the lanthanide ions are well excited by the standard radioluminescence of the undoped material. Also, studies have been made as a function of the deposited energy to investigate the potential applications.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/18321 |
Date | 11 April 2018 |
Creators | Peyrot, Donald A. |
Contributors | Lessard, Roger A., Roy, René |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | xx, 137, A-Z, AA-UU f., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0026 seconds