Latent variable models (LVMs) are commonly used in the scenario where the outcome of the main interest is an unobservable measure, associated with multiple observed surrogate outcomes, and affected by potential risk factors. This thesis develops an approach of efficient handling missing surrogate outcomes and covariates in two- and three-level latent variable models. However, corresponding statistical methodologies and computational software are lacking efficiently analyzing the LVMs given surrogate outcomes and covariates subject to missingness in the LVMs. We analyze the two-level LVMs for longitudinal data from the National Growth of Health Study where surrogate outcomes and covariates are subject to missingness at any of the levels. A conventional method for efficient handling of missing data is to reexpress the desired model as a joint distribution of variables, including the surrogate outcomes that are subject to missingness conditional on all of the covariates that are completely observable, and estimate the joint model by maximum likelihood, which is then transformed to the desired model. The joint model, however, identifies more parameters than desired, in general. The over-identified joint model produces biased estimates of LVMs so that it is most necessary to describe how to impose constraints on the joint model so that it has a one-to-one correspondence with the desired model for unbiased estimation. The constrained joint model handles missing data efficiently under the assumption of ignorable missing data and is estimated by a modified application of the expectation-maximization (EM) algorithm.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4482 |
Date | 01 January 2014 |
Creators | Ren, Chunfeng |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0019 seconds