Das Kraftstoffdampfmanagement in PKW dient der Reduzierung von Kraftstoffdampfemissionen und umfasst deren Entstehung im Tank, sowie Verarbeitung im Adsorber. Im Hinblick auf eine effektive Emissionsreduzierung erfolgt in dieser Arbeit die Entwicklung eines multiphysikalischen Berechnungsmodells, das die Erschließung der Kraftstoffdampfmenge im Tank sowie der Adsorbercharakteristik erlaubt. Gleichzeitig wird eine Methode zur thermischen Adsorberoptimierung durch Phasenwechselmaterialien (PCM) vorgestellt. Letztere nutzen für ihren fest/flüssig-Phasenübergang im Adsorber umgesetzte Prozesswärmen und können damit dessen Arbeitskapazität erhöhen.
Die Modellierung der tankinternen Kraftstoffdampfproduktion erfolgt basierend auf der Berechnung des Dampf-Flüssigkeit-Gleichgewichtes von Mehrstoffsystemen mit realen Fluidmodellen. Zudem wird eine thermodynamische Datenbank erstellt, die es erlaubt, reale ottomotorische Kraftstoffgemische durch Modellkraftstoffsysteme mit deutlich reduzierter Komponentenanzahl abzubilden. Es wird ein detailliertes nicht-isothermes 2D-rotationssymmetrisches Mehrkammeradsorbermodell für kompressible Fluidgemische entwickelt, das die temperaturabhängige Polyschichtsorption in porösen Festbetten wiedergibt und direkt über transiente Randbedingungen mit der instationären Kraftstoffverdampfung im Tank gekoppelt ist. Darin berücksichtigt sind unter anderem anisotrope Wärme- und Stofftransportprozesse innerhalb der Festbetten sowie Randeffekte infolge einer nicht-linearen Porositätsverteilung. Zwischen den Sorptionskammern wird eine dünnwandige Aluminium-Trennwand aus makroverkapseltem PCM integriert, die zur Temperierung der umliegenden Festbetten dient. Hierzu wird auf Basis einer diskontinuierlichen Form der Enthalpy-Porosity-Methode der nicht-isotherme Phasenwechsel im Latentwärmespeicher unter Berücksichtigung der konvektiven Schmelzbewegung modelliert und in Ort und Zeit mit dem Adsorbermodell gekoppelt. Das daraus resultierende partielle Differenzialgleichungssystem wird örtlich über eine Finite-Elemente-Methode und bzgl. der Zeit in Form eines impliziten Mehrschrittverfahrens diskretisiert. Die entsprechende numerische Lösung erfolgt mit Hilfe eines automatisch gedämpften Newton-Verfahrens.
Anhand des Adsorbermodells lässt sich der Einfluss von Randeffekten auf das Ad- und Desorptionsverhalten erschließen, die eine Abhängigkeit von der Festbettgeometrie und des temperaturabhängigen Beladungszustandes zeigen. Diese Sorptionsprozesse werden durch experimentelle Versuchs- reihen an einem hierzu entwickelten Adsorber-Prototyp validiert. Als Ergebnis der numerischen Simulation anwendungsrelevanter Prüfzyklen zur Adsorber-Typisierung resultiert durch den Einsatz von PCM eine Effizienzsteigerung in der Arbeitskapazität des Adsorbers von ca. 14 − 19 %. Zudem kann gezeigt werden, dass auch in Betriebszuständen ohne latenten Phasenwechsel im PCM infolge der konvektiven Bewegung der Schmelze die Sorptionsfähigkeit teilweise um mehr als 11 % ansteigt. Gleichzeitig ist im Vergleich zu der einfachen Vergrößerung des chemischen Sorptionsspeichers der Effekt einer Festbetttemperierung durch PCM partiell bis zu 10 % höher. Durch das einfache Substituieren der klassischen Kunststofftrennwände zwischen den Festbetten durch dünnwandige PCM-Kammern wird die Kraftstoffdampfnachbehandlung ohne relevante Gewichts- und Volumenzunahme des Adsorbers bedeutend verbessert.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29450 |
Date | 07 April 2016 |
Creators | Hedwig, Michael |
Contributors | Breitkopf, Cornelia, Lube, Gert, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds