Return to search

Epitaxy of Crystal Monolayers

Epitaxial growth, or the oriented growth of a crystalline monolayer on an ordered substrate, appears in a wide range of systems and applications, from novel device fabrication to freshwater remediation. Despite this, methodical studies of the phenomenon are rare, and the mechanisms governing epitaxial growth are poorly understood. This investigation employs AFM techniques to monitor the epitaxial growth of ion crystal systems at the initial stages of growth. By using systems with well-known physical properties, we are able to relate growth modes to two key parameters, crystal lattice mismatch, Δr/r₀, and affinity between the overgrowth and the substrate ions, ξ. We found wetting growth occurs for systems in which Δr/r₀ is expansive (overgrowth lattice must expand to accommodate substrate) or mildly compressive (overgrowth compresses to accommodate substrate). Additionally, a strong affinity between the substrate and overgrowth ions, in combination with an expansive system, allows for epitaxial growth from undersaturated solutions. We also have observed several instances where the lateral force contrast on the growing film exhibits a strong dependence on the time of exposure to the growth solution and on the driving force for growth (solute concentration). We present results for three epitaxial growth systems in aqueous solutions: CaSO₃ on CaCO₃, PbSO₄ on BaSO₄, and BaSO₃ on BaSO₄. Chemically and topographically identical regions grown at higher concentrations exhibit higher friction than regions grown at lower concentrations. These observations suggest that epitaxial growth occurs by a fast condensation step incorporating a high defect density.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194150
Date January 2009
CreatorsMurdaugh, Anne E.
ContributorsManne, Srinivas, Manne, Srinivas, Manne, Srinivas, Muzumdar, Sumit, Cheu, Elliott, Hsieh, Ke Chiang, Kessler, John
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0012 seconds