Return to search

Framework of Estimation of the Lateral Earth Pressure on Retaining Structures with Expansive and Non-expansive Soils as Backfill Material Considering the Influence of Environmental Factors

Lateral earth pressures (LEP) that arise due to backfill on retaining structures are typically determined by extending the principles of saturated soil mechanics. However, there is evidence in the literature to highlight the LEP on retaining structures due to the influence of soil backfill in saturated and unsaturated conditions are significantly different. Some studies are reported in the literature to interpret the variation of LEP on the retaining structures assuming that the variation of matric suction in unsaturated backfill material is hydrostatic (i.e. matric suction is assumed to decrease linearly from the surface to a value of zero at the ground water table). Such an assumption however is not reliable when the backfill behind the retaining wall is an expansive soil, which is extremely sensitive to the changes in variation of water content values. Significant volume changes occur in expansive soils due to the influence of environmental factors such as the infiltration and evaporation. In addition to the volume changes, the swelling pressure of the expansive soils also varies with changes in water content and can significantly influence the LEPs behind the retaining wall.
In this thesis, a framework for estimating the LEPs of unsaturated soils is proposed considering the variation of matric suction with respect to various water flow rates (i.e. infiltration and evaporation). The proposed approach is extended for expansive and non-expansive soils in this thesis taking into account of the influence of both the cracks and the lateral swelling pressure with changes in water content. A program code LEENES (Lateral pressure estimation on retaining walls taking account of Environmental factors for Expansive and Non-Expansive Soils) in MATLAB is written to predict the LEP. The program LEENES is valuable tool for geotechnical engineers to estimate the LEPs on retaining structures for various scenarios that are conventionally encountered in geotechnical engineering practice. The studies presented in this thesis are of interest to the practitioners who routinely design retaining walls with both expansive and non-expansive soils as backfill material.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/34858
Date January 2016
CreatorsGuo, Jiaying
ContributorsVanapalli, Sai
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds