A Latin square of order n is an n × n array in which each row and column contains symbols from an n-set, S = {a1,...,an}, exactly once. If two Latin squares L1 and L2 of the same order can be joined such that each of the n^2 ordered pairs (ai,aj) appears exactly once, then L1 and L2 are said to be orthogonal. This project will involve a variation of this idea. We define orthogonality of two Latin squares Lm and Ln, for m < n, as follows: When we place an m × m Latin square Lm inside an n × n Latin square Ln, in all possible ways, the so obtained m^2 ordered pairs (ai,aj) are always distinct. We first investigate the situation when m = 2 and n = p, where p is a prime.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-3003 |
Date | 01 August 2016 |
Creators | Gunawardana, Beruwalage Lakshika Kumari |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.002 seconds