Return to search

Coherent control of cold atoms in a[n] optical lattice

The dynamics of non-interacting, ultracold alkali atoms in the presence of counter-propagating lasers (optical lattice systems) is considered theoretically. The center of mass motion of an atom is such a system can be described by an effective Hamiltonian of a relatively simple form. Modulation of the laser fields implies a parametric variation of the effective Hamiltonian's eigenvalue spectrum, under which avoided crossings may occur. We investigate two dynamical processes arising from these near-degeneracies, which can be manipulated to coherently control atomic motion. First, we demonstrate the mechanism for the chaos-assisted, or multiple-state, tunneling observed in recent optical lattice experiments. Second, we propose a new method for the coherent acceleration of lattice atoms using the techniques of stimulated Raman adiabatic passage (STIRAP). In each case we use perturbation analysis to show the existence of a small, few level, subsystem of the full effective Schrödinger equation that determines the dynamics. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3251
Date28 August 2008
CreatorsHolder, Benjamin Peirce, 1976-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0014 seconds